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Networked control consists of sensors and actuators that interact with the “real world” environment
(plant), which are connected to each other and to with controllers over digital networks. Such systems are
long-running, have real-time requirements, and should function in a correct and timely manner even in the
presence of failures and software upgrades. Arguably, the growth and the widespread use of the internet,
the largest operational distributed system today; has been enabled by its fault-tolerant properties such as
robustness to router and link failures [20]. As such systems take on an incréasingly critical role, supporting -
local and nation.al 'infrastructures, homes and industries, the importance of reliability and availability issues
grows.

There are multiple causes of individual component failure in a networked control system including soft-
ware bugs and transient errors. The latter class of errors has been éhown to be responsible for a large number
of residual faults in individual components [16, 19]. In practice, a large number of the aforementioned fail-
ures result in crash failures, resulting in the component being restarted. In addition to unplanned restarts,
planned software upgrades to components also result in restarts. The importance of fast individual compo-
nent restarts (Microreboots) to reduce mean-time-to-recovery (MTTR) and thus improve sYstem availability

has been discussed in [14, 5].

In networked systems, fault-tolerance refers to'maintaining correct and timely system operation by toler-

ating errors in individual components, instead of avoiding failure of each individual component. This notion

of fault-tolerance in distributed real-time control systems has been described in [9]. Generic fault-tolerance
techniques developed in transaction based systems [22] and scientific computing [11, 1] are not applicable

in this domain due to their high overhead and lack of real-time performance. The goal of this work is to

 tolerate restarts and ensure correct and timely operation of a networked control system in the presence of

restarts to individual components. Achieving this goal increases the mean-time-to-failure (MTTF) of the
system thus enhancing both the reliability and the availability of the system.

In the IT Convergence Laboratory at the University of Illinois, we have developed a traffic control syStem
testbed as prototype networked control system. The testbed consists of a set of cars operating in an indoor
track. Each car is independently controlled by its own software controller that achieves to higher level goals

and receives feedback about its position from a vision system (sensor). The car controller then sends control




updates to the car. This system is described in further detail in section 2.

Through our experience with the traffic control testbed we identified three key challenges towards
achieving our goal: (1) Satisfying the real-time requirements on the control updates .sent to the controlled
plant, (2) Ensuring reliable delivery of aperiodic commands or messages between components, and (3) En-
suring that components can restart independently without cascading the restart to another component.

Specifically, this work focuses on the first challenge above, that of guaranteeing timely control updates
in the presence of restarts to the sensors and the controllers (Actuators are typically simple and more ro-
bust). Our approach exploits two important domain-specific features of the system in order to address this
challenge, the presence of a state estimator and the computation of a sequence of future controls by the
controller that are bﬁffered at a control buffer in the actuator. We use these properties of the controller and
its recovery times to derive an upper bound on the inter-arrival time between sensor updates. We have de-
veloped a control model based checkpointing techmque where we analyze the properties of a controller and
derive the condition under which the controller state needs to be regenerated from a checkpoint upon restart.
Both the above analyses are offline and are performed for each controller locally, thus making them highly
scalable. The second and third challenges above are integral to our goal. We address them in the context
of oﬁr testbed. We describe an approach to guarantee reliable delivery of aperiodic messages and to ensure
that the component state due to these messages is regenerated upon recovery. Our design of the components
in the téstbed avoids cascading restarts due to the restart of a single component and thus eliminates restart
dependencies.Component A is said to be restart dependent on component B if restarting component B en-
tails the restart of component A. In a networked control system such as our testbed, restart dependencies are -
a result of the nature of the communication channels between components. Throughout this paper, we focus
on the restart of the controller in a system following the sensor-controller-actuator pattern. The controller is
assumed to operate in a single mode.

Our example scenério in this paper consists of one car tailgating another. The two cars operate au-
tonomously, i.e. they are controlled by independent controllers. We evaluéte the effectiveness of the tech-
niques mentioned above by measuring the deviation of the front car from its trajectory upon random restarts

of its car controller. If the front car deviates by more than the separation distance, a collision results. This




scenario captures all the challenges described above. Our original design of the components in this sys-
tem was not restart-tolerant due to the presence of restart dependencies and the potential violation of the
real-time deadlines of the control updates due to inability to re-establish state upon restart of a controller.

The main contributions of this work are the following:

1. An offline analysis technique that derives the condition under which real-time deadlines of the system

are satisfied without checkpointing the controller state periodically.

2. Experimentally validating the above analysis technique for real-time control updates, re-engineering
controllers and sensors to remove restart dependencies and ensuring reliable delivery of aperiodic

messages in the presence of restarts in our traffic control testbed.

The rest of the paper is organized as follows. Our traffic control testbed is described in section 2.
Section 3 formally defines the real-time requirements of a controller and describes the issues related to satis-
fying these requiréments in the presence of restarts. Section 4 describes the techniques applied to eliminate
restart dependencies between components and to ensure the reliable delivery of aperiodic commands. Our
experiences in applying our techniques to the traffic control testbed are evaluated in section 5. We describe

existing work in section 6 and conclude with section 7.

2 The Trafﬁc Control Testbed

~We have developed a traffic control testbed as a research prototype of a networked control system [15]. An
overview of the system [2] is presented, followed by some design enhancements to tolerate variations in

operating conditions. These enhancements are used to develop restart techniques in later sections.

2.1 Traffic Control Testbed
Fig. 1 illustrates our traffic control testbed which consists of a fleet of small cars running on a small indoor

track. Each car is controlled by a dedicated controller, running on a laptop computer. This controller
periodically computes a series of controls and sends them to an actuator. The actuator component sends

controls to a car via the serial port, a micro-controller, a dedicated RF transmitter, and a dedicated RF




Figure 1: A Wireless Control Network Testbed
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Figure 2: Implementation of Testbed

receiver. The received signals are used to control motors on the physical car to change its speed and direction.
For our purposes, this configuration is equivalent to a controller being physically on the car

The cars are tracked by a vision system consisting of two ceiling mounted cameras and two vision
servers. The vision servers extract position and orientation information for each car, then relay the infor-
mation to a data server which in turn disseminates this data to the controllers. The vision server along with
the data server functions as a sensor. Communication between the vision system, the data server and the
controllers is via wired or ad hoc wireless networks.

Figure 2 shows the software afchitecture of the controllers driving each car. To begin an experiment, a

controller receives a trajectory to follow from a trajectory server. Throughout the experiment, a controller
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Figure 3: Design enhancements for robustness

receives periodic updates from the vision servers. The controller periodically computes a set of controls

according to the vision updates, the desired trajectory, and the current time and sends it to the actuator.

2.2 Design for Robustness

In most networké, packet delivery is usually performed on a best effort basis. On wireless networks in
particular, packet delays are unpredictable due to interference and noise. Hence, design enhancements are
required to control the plant despite such variations.

Figure 3(a) describes a control loop in the testbed‘ design of Figure 2. In the testbed, feedback from
the vision data server to the controller is transmitted over a network, and is subject to unpredictable delays.
For robust design and simpler deterministic control, the controller needs to be shielded from these delays.
Hence, as shown in figure 3(b), the controller is isolated from the vision data server by a state estimator. The
estimator estimates the state of the car as a function of the feedback and controls sent to the actuator. E.g. A
calibration of the steering angles and the speed of the car for d.ifferentv control outputs is used in our testbed
as a state estimator. Based on these estimates, the controller can operate even when some feedback updates
are delayed or lost. Similarly, a control buffer isolates the actuator from delays and losses of controls from
the controller. To exploit this, the controller computes a sequence of future controls, which is then stored.
in the control buffer. Hence, in case of delays in the arrival of future controls, the actuator can still operate

using the buffered controls.




While the state estimator estimates the position and orientation of the car, the car controller itself uses
model predictive control [3], and computes possible future sequences of controls based on the current state
estimate. After each control, the state of the car is predicted using a state predictor, which uses techniques
similar to the estimator. The controller then selects the sequence of controls that results in the least squared
error between the predicted state of the car and the desired trajectory, and sends this to the actuator.

The ébove design enhancements are necessary for timely system operation. We can exploit these en-
hancements to improve system robustness in the presence of restarts. For instance, the state estimator allows
the controller to tolerate longer delays in sensor updates. This facilitates fault management techniques such

‘
as extending the deadline by which the vision data server can be restarted. To ensure that the system can
operate despite such faults, the deadlines need to be determined and efficient restart mechanisms developed.

This is addressed in the following section.

3 Real-time Analysis of Controller Restarts
This section presents an analysis of the enhanced design of the control system from section 2.2. Constraints
on maximum delay of sensor updates are derived and used to select appropriate restart techhiques for the

s

controller.

3.1 Controller model

We now model a generic controller. This will be used to derive various bounds in the rest of the section. A

controller may be modeled as the tuple (Ip(2),1a(t),x(t), up(t),ua(?)), at a given time ¢, where:

o I, is the vector of periodic inputs. For example, the car controller of Figure 1 receives periodic

feedback updates from the Vision Data Server.

e I, is the vector of aperiodic inputs. For example, the car controller may receive aperiodic inputs about

an approaching car that may collide with it.

e xis the state of the controller. For a car controller, this is the position, speed, and steering angle of the

car.




e u, is the vector of periodic control outputs. For example, the car controller sends periodic controls to

the Actuator.

e u, is the vector of aperiodic control outputs. For example, the car controller gets aperiodic controls

. (STOP/GO) from the Trajectory Server.

In the folloWing analysis, we only model the steady state operation of a controller such as the car con-
troller. We consider only periodic inputs I, and assume that the controller only generates periodic outputs

up. Aperiodic controls and updates are considered in a later section.

3.1.1 State Estimator

- As illustrated in Section 2.2, noise and perturbations in periodic inputs are tolerated using a state estimator.

Wev use a Kalman filter [7] to estimate state in the car controller. This is a commonly used state estimator.
An extended Kalman filter maintains two state estimates % and £, which are updated using the following
difference equatiohs:
K1) = f(%(t — 1),up(t —1),w(r - 1)) ey
#(1) = (), L (1),v())) @

wﬁere the random variables w and v represent the process and measurement noise respectively. Eq. 1 updates
the estimate based on the previous control, while eq.. 2 corrects the estimate using current observations Ip.
The estimate £ is the output of the filter and is used to compute controls.

In the rest of the section, for simplicity, we assume that I, is a scalar. However, the following analysis
can easily be extended to the case where I, is a vector. |

As noted in Section 2.2, packet delays and sensor restarts may cause successive updates of I, to be de-

layed or lost. Since discrete control is imperfect, estimates are noisy due to process noise w, and corrections

are not incorporated by eq. 2, the error between the estimate % and the actual state x increases with time.
Figure 4 illustrates the increase in uncertainty of state estimates, when successive updates I, are lost.

During this period, the controller can only use the uncorrected estimate X to compute controls. SE(k—1)
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Figure 4: Time line illustrating estimate and control buffer deadlines

represents the interval, after the last update 7'(L) was received, up to which the error in estimate is tolerable.

For proper controller operation, the maximum delay between successive sensor updates T, should be less

than this interval, i.e., T, < SE(k—1)—t,—T(proc) ' B

where #, is the control output period, and T (proc) is the processing time at the controller. Note that equation

3 can also be used to derive the deadline for sensor restarts in terms of T}y, ax-

3.1.2 Control Buffers

As noted in Section 2.2, a control buffer is used to tolerate delays and losses of controls sent over a network.
The interval of time for which the Actuator has buffered future controls is called the Control Horizon. Since
the state estimate is used to compute the controls, the control horizon should be lesser than the interval

detei’mining tolerate error in state estimates, i.e.,

CH(k) < SE(k) ’ ' “4)

The control horizon can also be limited by system limitations such as the computational resources. For
example, a model predictive controller may analyze only a limited horizon of future controls, which is then

sent to the actuator. For safety, the last control in the sequence can be a fail-safe.




3.2 Restart analysis and techniques

We now analyze controller restart bounds, based on the model presented in Section 3.1. This will rﬁotivate
techniques to restart the controller and restore its state. In the following analysis, §ve assume that restarts
to the cbntroller are infrequent compared to the frequency of the sensor inputs. or the controls sent to the
actﬁator. Specifically, we assume that the interval between restarts is greater than the period of successive
lost updates. This is usually a reasonable assumption in practice.

Figure 4 shows the time line for a controller restart. The controller has a fault and restarts at time T(R).
It then recovers and completes all initializations at time T'(Rec). The thick line in the figure represents
this restart period of the controller. T(O) is the time the last output was sent _by the controller before the
restart occurred. By the description of Section 3.1, the controls sent to the actuator are valid until time
T(0)+CH (k—1). Hence, the controller needs to send the next controls only before this deadline. The time
interval from T (Rec) to T(0) + CH (k— 1) is called the restart window (RW) of the controller. In the worst

case, RW is given by the following equation:

RW = CH(k—1) — (T(Rec) — T(R)) — 1, 6

Upoh recovery, the controller needs to send a control output to the actuator (consisting of a sequence of
future controls) before the restart window expires.

The state x in the controller has to be re-established, upon restart and recovery, for controls to be com-
puted before the deadline RW above. This allows the controller to resume normal operation without affecting

the Actuator. We consider two different ways to re-establish controller state:

1. State check-pointing: Upon sending each output, the controller checkpoints the car state and the
sequence of controls sent to the actuator. Upon restart-recovery, this checkpoint is read and the state
at the time of recovery is computed by a state estimator. In the case of the Kalman state estimator,
at time T'(0) in figure 4, we need to checkpoint the state x(k — 1) measured at the last sensor updaté

received at time T (L), and the controls sent since the measured update.

2. No state check-pointing: The state of the controller can be re-established before time 7'(0) +CH (k—
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1), if a sensor updated is received within the restart window. This avoids overhead due to check-
pointing. However, this condition imposes a tighter upper bound on T,,,,, than equation 3. This bound
is given by:

Ty < RW — T (Proc) = Tynee < CH(k— 1) — (T (Rec) — T(R)) —t, — T (Proc) (6)

Equation 6 is the condition under which state x can be regenerated upon recovery without periodically
check-pointing x and the set of future controls. This equation subsumes the bounds in equations 3

and 4.

In practice, we can calculate the size of the restart window of the controller using the length of the control
horizon, the worst-case recovery time and the period of the control output using equation 5 above. We then
use equation 6 to calculate the maximum inter-arrival time of the sensor updates in order that the controller
state is re-established upon restart without periodic check-pointing of the state. If this condition holds for
the given sensor, then check-pointing state periodically in the controller is not necessary. Otherwise, check-
pointing is required. We thus refer to this technique as control model based check-pointing of periodic state.
Note that the constraint on the inter-arrival time of the sensor updates 7,,,,, imposes requirements on both
the sensor as well as the communication medium between the sensor and the controller. This bound needs to
be satisfied even in the presence of restarts to the sensor. We have experimentally validated the mechanism
developéd in this section by applying them to the car controller in our testbed as described in section 5.

In the testbed, in addition to the position of the car, the speed of the controlled car before restaﬁ needs
to be regenerated upon recovery, due to the inertial property of the car. In our experiment, speed is a
state variable that changes infrequently and aperiodically. We discuss regeneration of component states

corresponding to aperiodic updates sent to the controller in the following section.

4 Restart Techniques: Dependencies and Aperiodic Updates

Apart from maintaining the real-time properties of the system in the presence of restarts to individual com-
ponents, we identified two other significant ‘challenges that needed to be overcome in order to maintain

correct system operation in the presence of restarts to a single component: eliminating restart dependencies
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Figure 5: Removing communication-based restart dependencies

and regenerating the component state due to aperiodic updates upon recovery. Below, we discuss these two

challenges in the context of our testbed.

4.1 Restart Dependencies

A compbnent A is restart dependent on component B, if restarting component B entails restarting component
A. We observe two sources of restart dependencies in networked control systems such as our testbed: (1)
inability to independently restart each component and (2) communication—based resfart dependencies. Both
these sources of dependéncies are illustrated in section 4.1.1 The messages exchanged between components
are either periodic (e.g. sensor updates, control outputs) or aperiodic (e.g. trajectories, STOP/GO). Thus data

dependencies that arise from these messages are addressed by our techniques section 3 and 4.2 respectively.

4.1.1 Restart Dependencies in the Testbed

Communication-based Restart Dependencies

Our original design of the vision data server, the trajectory server, and the controller contained communication-

based restart dependencies between the cqnfroller and the data server as well as the controller and the tra-
jectory server. The design however did not contain any communication-based deadlocks. The components
needed to be redesigned in order to avoid cascading restarts in the event of restarting one of the components.
We use the communication between the data server and the controller to illustrate our design.

Fig 5(a) represents the communication between the data server and a particular car controller in the

12




original design. The car controller receives updates from the corresponding thread in the data server via a
UDP connection. A TCP connection between the car controller and the data server is used as a keep;alive for
the data server to detect a restart of the car controller and ’garbage-collect’ the corresponding thread in the
data server. In this design, restarting the data server caused the TCP connection to disconnect, thus resulting
in an error in the car controller which thus needs to be restarted (represented by the dashed arc). This is an
instance of a restart dependency. Fig 5(b) représents our new design of the communication between the data
server and the controller which eliminates this dependency. In this implementation, thé TCP connection used
as a keep-alive between the daté server and the controller is eliminated. The data server now checkpoints its
connections, thus re-establishing this state in the event of a restart recovery. The controller uses UDP keep-
alives or reliable disconnection messages in order that the data server can garbagé-collect its corresponding
thread. Thus, in the event of restarting the data server, the controll¢r continues to wait for an update from the
data server and does not need to be restarted. We apply a similar technique to re-design the communication
between the controller and the trajectory server. |

Restart Independence

The communication between the controller and the actuator itself uses UDP over a reliable link and
thus does not give rise to any restart dependencies. In the original design, the controller and the actuator
were a part of the same component. The controller sent the control signals via serial port to the micro-
controller which, in turn, sent the signals via a transceiver to the receiver on the car which drives the motors
on the car. While the actuator is required to be a highly reliable component, the complexity of the controller
precluded this. Inébility to restart the controller independently of the actuator made the system intolerant
to controller restarts. Our new design split the controller and the actuator functionality allowing the two
software components to communicate via a reliable UDP link, making the actuator simple and robust and

the controller and actuator independently restartable.

4.2 Aperiodic Updates

Aperiodic updates cause discrete changes to the component state corresponding to these updates (aperiodic

component state) in the component. These updates are critical and need to be delivered reliably. In our
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domain, we encounter the following categories of aperiodic updates: (1) sensors to controllers - e.g. an
aperiodic event such as a gunshot detected by the motes and sent to the car controller, (2) controllers to a
sensor - e.g. a éontroller registering with (or disconnecting from) a sensor for updates upon start-up, 3
higher level controller to a lower level controller - e.g. a trajectory or a GO/STOP command sent by the
trajectory server to the controller, and (4) lower level controller to a higher level controller - e.g. a controller
registering with a trajectory server upon start-up.

~ In order to Handle aperiodic updates in the event of restarts to the component, (a) the aperiodic compo-
nent state needs to be regenerated upon restart and (b) aperiodic updates need to be delivered reliably. We
illustrate these two mechanisms with respect to the car controller in our testbed.

In the testbed, the car controller needs to regenerate the GO/STOP status, trajectory, and the speed of the
car. Our approach involves checkpointing the aperiodic component state each time an aperiodic update is
réceived or the aperiodic component state changes. This checkpoint is read and used upon recovery. Also,
each of these aperiodic updates need to be delivered reliably to the car controller. These aperiodic updates
are thus sent using an application-level protocol where the updates are re-sent until an acknowledgment
‘is received from the controller. Acknowledgments are only sent by the car controller after the aperiodic
| component state change due to the update is checkpointed at the controller. If the controller is down when

an aperiodic update is sent, this update is received by the controller after recovery.

5 Results

Our testbed described in section 2 has been designed to explore issues in the convergence of control with
communication and computation. It has been tested for different scenarios including leader-follower mode
"and a set of independent cars achieving individual goals without collisions. Videos of thése demonstrations
can be viewed at http: //decision.csl.uiuc.edu/~testbed/Videos.html. Restarting con-
 trollers and éensors is common during experimentation and bug fixes. In this section, we evaluate our

techniques from section 3 and 4 using a tailgating experiment.
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5.1 Case Study: Tailgating

To study the effect of controller restarts, we derive an experiment from the scenario of a car closely following
another car along an identical trajectory with a fixed separation of 100mm ’bumper-to-bumper’ along an
elliptical trajectory which is 9.6m loﬁg. The cars themselves are 225mm long and travel at an average
speed of 371mm per second. One loop around the oval takes 26s to complete. The cars are controlled
independently. The car in front is subject to real-time constraints in the presence of restarts to its controller
‘since its maxi;num deviation is bounded by its distance from the car behind. The experiment consisted of
sporadically restarting the controller of the first car. Tﬁis experiment was repeated 15 times. Below, we
show the results for a representative run. The goal of our restart techniques in this application is to avoid
collisions.

Although the experiment is derived from the case of one car following another, we are primarily in-
tercstéd in the deviation of the first car from its desired trajectory in the event of restarts. The plot of the
deviation of the car’from its trajectory demonstrates the physical manifestation of a restart and its temporal
characteristics while using our restart techniques. A restarted car may exhibit a temporal deviation from its
desired position. For the purposes of capturing data, we measure the difference in the position of the car
from the position of a fictitious car exactly following the desired trajectory. Nofe that the inherent noise in
the measurement and the actuators causes the car to deviate from its trajectory by approximately 25mm even
- under normal operation.

The control horizon of the future controls sent by our car controller to the is 1800ms. The period of
sensor updates to the controller and the controls sent to the actuator is 100ms. The restart recovery time
is the time between killing the controller and the re-establishment of its communication channels after
recovery. This time is typica]ly 500ms. Note howe“ver, that in our deéign of the controller, the controller
connects to the data server upon réstart and waits for a response, upon whose receipt the controller is said to
be completely recovered. This is, in fact, a residual dependency in our system that can cause much higher
restart recovery times for the controller if the data server delays the response. This however, does not occur

in practice since we do not restart the controller and the data server at the same time. By our analysis in
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Figure 6: Unsuccessful restarts

section 3, the restart window in our case is (1800 - 500 - 100) = 1200ms, which is greater than the typical
sensor update period of 100ms and the worst case sensor update inter-arrival time that occurs in the event of
a sensor restart. Thus, we do not checkpoint the periodic state in the controller. Upon recovery, the controller
simpiy waits for the following sensor update in order to compute and send controls to the actuator.

Since a successful result in this case shows no deviations from the desired trajectory, we illustrate our
techniques by introducing delays in the restart recovery' times in order to compare unsuccessful restarts
with successful restarts. Figure 6 shows two such large deviations (2462 and 2465ms respectively). Note
that the elapsed time for restarting, including the forced delay, exceeds the restart window. Hence, in both
restarts, the actuator stops the car after 1800ms (due to its fail-safe mechanism), after which the deviation
from the desired trajectory begins to grow quickly. Also, note the slower growth in deviation prior to the

time at which the actuator stops the car. This is a result of graceful degradation of control commands. Upon

recovery, the car gains speed and catches up with its desired trajectory and the deviation stabilizes. Note

that in these cases, the restart windows are non-existent due to the high recovery times.
Figure 7 plots a the effect of sporadic restarts of the car controller with randomized recovery times. The
car is allowed to stabilize and operate normally between restarts. Actuator noise is frequently larger than the

effect of a restart. Therefore, we have chosen a trajectory in which actuator noise is minimized. Specifically,
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we use a very large oval in order to eliminate noisy sharp turns as trajectory and commiand a constant speed.

These choices are useful for clean illustration and are not required by our techniques.

We begin the experiment by running the system normally in order to demonstrate the typical actuator
and sensor noise. A successful restart .does not affect the car and the deviation from the trajectory is minimal.
These restarts are characterized by the fact that the controller recovers before the entire set of future controls
is used by the actuator, thus sending it a fresh sequence of controls i.e. the controller receives a sensor update
within the restart window. In figure 7. the restart times are shown in milliseconds after each restart. The
time of restart is represented by the inverted unshaded triangle and the timé of recovery is represented by

the upright shaded triangle. Restart times include both the recovery time as well as our randomly introduced

delay. Inverted shaded triangles in the figure represent the time at which the control updates in the actuators

are exhausted and the car stops due to the actuator fail-safe command. These have been plotted by simply
adding the value of the control horizon (1800ms) to the time of restart. Successful restarts are those where
there is no inverted shaded triangle. Cleaﬂy, restart recovery times above 1600ms lead to a restart window of
100ms or smaller (since the control horizon = 1800ms and the period of control updates = 100ms) causing
the real-time deadline of the system to be violated. For restart recovery times above 1600ms and below

1700ms, regular checkpointing of controller state is necessary in order that the system deadlines are met.
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The experiment demonstrates that all restarts which are accomplished within the prescribed safety hori-
zon result in little or no deviation from the desired trajectory. Clearly, the control horizon and the tolerable

error are application specific parameters.

6 Related Work

Restarts of individual components for recovery, pro-actively as well as reactively have been seen in software
rejuvenation [25] and recovery-oriented computing [13, 4]. While the latter used fast restarts of individual
~ components in a system as a tool to improve systemk avéilability, our work assumes a recovery time and
maintains timely operation in the presence of restarts thus increasing the MTTF of the system aiding both
reliability and availability. Also, th¢se works are aimed at generic applications and do not address the real-
time constraints that exist in control systems. Reducing the recovery time increases the size of the restart
window and thus complements this work well. |

Failure model in control systems is better described by the fail-bounded model [18]. Fail-bounded
models ensure that wrong outputs have a bounded deviation from the correct output; Our use of the state
estimator in the controller and the control buffer in the actuator assume this model. Fault-tolerance in
_ distributed control systems have relied on redundancy and replication [12, 24, 6]. While replication is an ef-
fectivé technique against crash errors due to transient faults, it is expensive. Simple replication is 'ineffective
against programmer bugs that cause all replicas to crash. Simplex [23] is an architecture that uses analytical
redundancy to provide robustness against controller failure by switching to a back-up controller in real-time.
Simplex adopts an orthogonal technique to this work and can thus be used in combination with our analysis
bf real-time restarts. In real-time systems, the problem of replica determinism is challenging {21]. In [17]
and [8], the importance of low-cost fault-tolerance techniques without the use of redundant controllers is
motivated. In [9], the notion of fault tolerance in distributed control systems is defined with respect to sys-
tem operation instead of the operation of an individuél controller. In this work, we adopt a similar model
of fault-tolerance where we guarantee timely and correct system operation in the presence of failures (and
hence restarts) of individual controllers and sensors.

Traditional techniques for failure-tolerance developed for transaction based systems [22] and scientific
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computing [11, 1] are not applicable to these systems primarily due to the real-time requirements and the
periodic event-based semantics in this domain. Further, generic checkpointing techniques have been shown

to be inadequate in [10].

7 Conclusions and Future Work

In this paper, we demonstrate techniques to maintain system operation in the presence of individual com-
ponent restarts in a real-time networked control system without the use of checkpointing. We analyzed the
real-time properties of a networked control system following the sensor—controllef‘-actuatdr pattern, in the
presence of restarts to the controller. We analyzed the effect of the state estimator in the controller for peri-

odic state and the control buffer in the actuator. Using this analysis we derived conditions on the inter-arrival

' time of sensor updates and the constraint under which the periodic state is regenerated upon recovery (and

hence real-time requirement of the controller satisfied) without checkpointing the periodic state upon each
update. We tested the above analysis on our car control testbed. In order to tolerate restarts of sensors and
controllers while maintaining correct and timely system operation, we implemented techniques to eliminate
communication-based restart dependencies between the different components and to regenerate the aperi-
odic state from a checkpoint.v The combination of our design and our analysis techniques allowed us to
réstart the car controller in our experiment with negligible deviations of the car frqm its trajectory.

As future work, we plan to develop a static tool to formally analyze the communication protocoi between
components and detect restart dependencies. In our currént work, we eliminated these dependencies by
design. Also, our current work aésumes that the components such as the controller function in a single
mode of operation. In the future, we intend to analyze multi-mode controllers where the communication

and the computation modes of the controller change depending on changes in the environment and even

- peer restarts, thus creating new restart dependencies dynamically.
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